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LETI'ER TO THE EDITOR 

Transfer matrix calculation of the relative noise exponent in a 
two-dimensional percolating network 

A Csordast 
Service de Physique Thtorique, CEN-Saclay, 91 191 Cif-sur-Yvette Cedex, France 

Received 21 April 1986 

Abstract. A new method is given for calculating the relative noise exponent describing the 
size dependence of macroscopic fluctuations due to microscopic resistance noise of a 
random resistor network at the percolation threshold p c .  The macroscopic fluctuation is 
calculated exactly using the transfer matrix idea in a given network. The asymptotic 
exponent b is found by finite-size scaling. 

The critical behaviour of random networks has motivated much recent work. Quantities 
such as the fractal dimension [ 11, correlation length exponent, spectral dimension 
[2,3] and spreading dimension [4,5] are used to describe the geometrical properties 
of percolation clusters. However, these quantities are not sufficient for a characterisa- 
tion of all the physical properties of a self-similar structure. Calculations on different 
fractals [6-81 and E expansion [9] indicated that an infinite number of exponents 
describe resistance fluctuations arising from the microscopic noise of individual resis- 
tors of the network. Park et a1 [9] have suggested the existence of an extended family 
of exponents. From the work of de Arcangelis et a1 [7] one knows that an anomalous 
voltage distribution of random networks is the common origin of the existence of this 
family of exponents. 

The purpose of the present letter is to present a method for measuring the relative 
noise exponent b. The basic quantity in which we are interested is the magnitude of 
the relative noise 9R = {(SRGR)/ R 2 }  where R and SR are, respectively, the overall 
resistance and its fluctuation. ( ) means an average over the noise for one network; 
{ } an average over different networks. For a strip of width n and length L, with L+ 03 

at fixed n, it varies at p c  asymptotically as 

This exponent, proposed by Rammal et a1 [8], is closely related to the first few members 
of the exponent family of resistance noise. The method is very similar to the transfer 
matrix method for calculating the conductivity and resistivity exponent [ 101. The main 
advantage is that it gives the correlation function of the resistivity matrix exactly. But 
to do this one has to apply a matrix with four indices. This is a certain disadvantage 
of the method. We compute the resistivity and the resistivity-resistivity correlation 
per unit length of networks consisting of long strips with resistors placed randomly 
on a square lattice. The results obtained for varying strip widths are analysed with 
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the help of finite-size scaling. They give an estimate for the two-dimensional relative 
noise exponent b. 

The simplest version of the model can be formulated as follows. There are two 
kinds of resistors: superconducting with probability p c  = 4 and normal conducting with 
probability 1 - p c  and only the normal resistances fluctuate independently with the 
same frequency spectrum. We note that in previous work [8,9] a mixture of normal 
conducting and insulating bonds had been considered instead. The strip is constructed 
by adding bond after bond. In the transverse direction we impose periodic boundary 
conditions which have been used in the case of random mixtures of normal and 
superconducting resistors [ 113 .  In the first vertical plane the voltage is zero. If the 
configuration of currents attached to the last plane is 11, . . . , I ,  then the voltages on 
this plane are given by the resistivity matrix: 

n 

U, = RGIj for i = 1-n. 
j = 1  

For each bond that one adds, R, has to be transformed [ 113. 
Now let us assume that we have constructed the strip in this way and that we know 

the resistivity matrix R. If the resistance of the normal resistors is not fixed but 
fluctuates around the average value, the change of R ,  is given by the first term of a 
weak-disorder expansion of Ro: 

a R ,  
9 ar, 

SR, = - Sr, 

where the summation is taken over all normal resistors. The derivatives aR,/ar, depend 
only on the unperturbed network. We can calculate correlation functions such as 

c,j,i = (6RV6Rki). 

After adding a new bond c , k ,  has to be transformed. Thus one can obtain recursion 
formulae for CUk[. For a very long strip, the overall resistance and resistance fluctuation 
per unit length are given by 

p, = lim ( R , , / L )  c, = (SRSR) = lim ( C i i i i / L )  
L-m L-raS 

independently of the endpoint i. 
Suppose that the behaviour of c, in the large n limit is 

nc, - n V E  ( P  = P c )  

np, - n-” ( P  = P c )  

then, since 

we have b = E - 2s/ v. In two dimensions, because of exact duality [ 121, b is the same 
for a normal insulator and a normal superconducting mixture; p c  = f in the two cases. 
Thus from these results we know also the exponent x2 proposed by Rammal et a1 [SI. 

The results of our calculation obtained by using about 5 h on a Prime computer 
are displayed in figure 1 .  Our result is 

b = 1.2 

with the error bar about lo%, b being somewhat greater than previously published. 
To compute the exponent b more precisely we must choose a greater length. We hope 
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Figure 1. Log-log plot of c, against the strip width n. Error bars arise from the statistical 
errors. L = 1000 for n = 2, 3, 4, 5 ,  L = 5000 for n = 7, 10, 1 1  and L = 2000 for n = 15.  

that we will be able to repeat our calculation on a Cray vector computer. We have 
already succeeded in vectorising the program [ 131. 

In summary, we have proposed a new method based on the transfer matrix approach. 
For our model in two dimensions the relative noise has the same critical behaviour as 
for a normal insulator mixture. Our method is not limited to any spatial dimension 
and we hope that we will also be able to perform calculations in three dimensions. 

I am grateful to H J Herrmann for many helpful discussions during my stay in Saclay 
and I would like to thank B Derrida, D Stauffer, J M Luck and J Raynal for stimulating 
remarks. I acknowledge the hospitality of the Service de Physique ThCorique in Saclay 
where this work was done. 
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